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Damping characteristics of #uid}structure systems are di$cult to measure or calculate. In the
past, such data have been rather scarce. This study reports an attempt on the use of a numerical
approach to derive damping ratios related to #uid}structure interactions. It is based on an
autoregressive moving-average (ARMA) method, which is used to analyse the displacement
time series obtained from a numerical simulation of an elastic cylinder in a uniform cross-#ow.
The damping ratios show a similar trend to those obtained in previous experiments. An
alternative way to deduce damping ratios is to decompose the transverse force in the structural
dynamics equation into a drag (or out-of-phase) and an inertia (or in-phase) component for
analysis. The damping thus deduced is in fair agreement with that obtained from ARMA;
however, at or near synchronization, where the natural frequency of the stationary cylinder is
close to the vortex shedding frequency, there is a very substantial di!erence between the two
results. ( 2000 Academic Press
1. INTRODUCTION

A FLUID}STRUCTURE INTERACTION PROBLEM of common occurrence is that of a freely vibrating
blu! structure in a cross-#ow. The #ow-induced vibrations resulting from the shed vortices
can cause structural fatigue and, in certain circumstances, can lead to drastic failure of the
structure. As a result, the problem has received increased attention from researchers in
recent years because many modern structures use composite and lighter materials that give
rise to low damping and a wide synchronization band. According to Sarpkaya (1979),
synchronization occurs when the natural frequency of the #uid}cylinder system is equal to
the vortex shedding frequency of the vibrating cylinder. Since this cannot be determined
a priori, synchronization can be assumed to take place whenever the natural frequency of
the cylinder is approximately equal to the vortex shedding frequency of the stationary
cylinder (Zhou et al. 1999).

Damping models the energy dissipation during vibrations and plays an important role in
the stability of the structure and its vibration amplitudes. If the dynamic behaviour of the
structure were to be understood properly, one would have to have knowledge of the e!ects
of damping. Damping may arise from the structure and from the #uid surrounding the
structure. Structural damping is related to the properties of the structure itself, while #uid
damping is due to viscous dissipation and #uid drag, i.e. it is the result of viscous shearing of
889}9746/00/040303#20 $35.00/0 ( 2000 Academic Press
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the #uid at the surface of the structure and of #ow separation. Thus, #uid damping
is motion-dependent and more di$cult to estimate. It is generally known that the
e!ective damping ratio f

e
, which includes the structural damping ratio f

s
and the #uid

damping ratio f
f
, is not constant for any structure in a #owing medium. Rather, f

e
varies

with #ow velocity and vibration amplitude of the structure (Wood & Parkinson 1977). It
has been shown by Gri$n et al. (1973) that the #uid damping ratio is a function of both the
structural vibration amplitude and a reduced velocity, <

r
. The same result has also been

found to be true in an experimental investigation carried out by Chen & Jendrzejczyk
(1979), where the damping ratios in the lift and drag direction were measured. In spite of
these studies, a systematic investigation of the e!ective and #uid damping ratios has not
been carried out to-date.

There have been several mathematical models proposed to predict the vortex-induced
response of a structure exposed to a cross-#ow, such as the linear and nonlinear wake
oscillator models (Sarpkaya 1979; Blevins 1994). These models do not include the analysis
of the #ow "eld, but couple a #uid oscillator for the #uctuating lift with a dynamic equation
for the structural motion. In the course of developing these models, there arises an
important question concerning the correct damping coe$cient value to use in the structural
dynamic equation (Skop & Balasubramanian 1997). This question has not been fully
resolved even though many experimental studies have been carried out, attempting to
measure the #uid damping ratio (Sarpkaya 1979).

In the past several years, a number of numerical approaches have been proposed to tackle
the fully coupled #uid}structure interaction problem, where the #ow "eld is resolved
numerically. Some of these approaches are the time-marching technique proposed by Jadic
et al. (1998), the direct numerical simulation of Newman and Karniadakis (1997) and the
random walk vortex method of Slaouti & Stansby (1994). In principle, the numerical results
contain most of the pertinent information relating to the #ow-induced vibration problem. It
is up to the investigators to extract them out for analysis. Even though these studies report
in detail on the #uid}structure interaction behaviour, none has attempted to deduce
damping characteristics from their results. Consequently, reliable #uid damping informa-
tion on this very simple #ow-induced vibration problem is still lacking.

Recently, Zhou et al. (1999) have carried out a rather detailed investigation of
#ow-induced vibrations of an elastic circular cylinder in a cross-#ow. A discrete
vortex method incorporating a "nite di!erence technique was used to simulate the #ow
"eld. The cylinder response was modelled by a spring}damper}mass system while the #uid
motion and the structural response were solved in a way that the interactions between the
#uid and the structure were handled properly. In that study, the cylinder response,
#ow-induced forces, the e!ects of cylinder vibrations on the vortex shedding frequency and
the wake vortex pattern were examined. Again, no information on #uid damping was
reported.

In this paper, it is proposed to extract damping information from the results obtained by
Zhou et al. (1999). The approach used is based on the auto-regressive moving-average
(ARMA) identi"cation technique of Mignolet & Red Horse (1994). This ARMA technique is
used to analyse the time series of the structural displacements in order to deduce #uid
damping ratios of the #uid}structure system. It is hoped that the information thus obtained
will further enhance the understanding of the #ow-induced vibrations of an elastic cylinder
in a cross-#ow and hence complements the work of Zhou et al. (1999). A secondary objective
of the present study is to establish the credibility of the ARMA technique so that it can be
used to deduce damping information from experimental data. In order to achieve this
objective, an independent method for extracting damping information will be used to
analyse the numerical data obtained by Zhou et al. This is the force decomposition method
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where the transverse #uid force is decomposed into a drag (or out-of-phase) component and
an inertia (or in-phase) component for substitution into the structural dynamics equation
for analysis. The damping ratios thus deduced could substantiate those obtained from
ARMA. In addition, the decomposed force components can be used to further examine the
e!ects of the #uid motion and mass ratio on the natural frequencies of the #uid}structure
system.

The use of the Zhou et al. (1999) data can be justi"ed as follows. It is a numerical
simulation study; therefore, all information related to displacements, pressure, forces and
their respective spectra is available. This contrasts with experimental data where displace-
ments, strain or forces are measured only. All three quantities are seldom measured
together. In fact, local unsteady forces are seldom measured. Even when an attempt was
made, the measurements were for situations where the structure was rigid rather than elastic
(Sin & So 1987; Baban et al. 1989; Baban & So 1991). The ARMA technique can be used to
analyse any of these signals. However, the force decomposition method requires the use of
force data alone. In view of this requirement and for reasons to be discussed in the next
section, the force decomposition method is limited compared to the ARMA technique.
Since the force decomposition method is relatively more well-established than the ARMA
technique, it could be used as an independent method to verify the ARMA deduced
damping ratios away from synchronization. This is the reason why in the present study,
ARMA is used to analyse the displacement signals, while the force decomposition method is
applied to examine the numerically calculated unsteady forces. Thus veri"ed, ARMA can be
used with con"dence to evaluate damping ratios from experimental studies where local
force data is not available.

2. NUMERICAL FORMULATION

The vortex-in-cell (VIC) discrete vortex method is used to simulate the two-dimensional
uniform #ow past an elastic circular cylinder. For the sake of completeness, the method is
brie#y described below; further details can be found in Zhou et al. (1999). The VIC discrete
vortex method represents the #ow "eld by a number of point vortices. The motion of the
#uid is then solved through tracking the evolutions of the point vortices, which includes two
steps: the convection of vorticity and the di!usion of vorticity. The velocity "eld for the
convection is obtained by solving the Poisson equation for the stream function on a mesh,
while the #uid at in"nity is assumed to be uniform with a velocity;

=
in the x direction; on

the surface of the cylinder, the no-slip condition is applied. The di!usion of vorticity is
obtained by solving the di!usion part of the vorticity transport equation using a "nite
di!erence scheme on the same mesh.

The response of the elastic cylinder is modelled by a spring}damper}mass system. Thus
the motion of the cylinder can be written as

m
d2v
dt2

#2mf
s
u

n

dv
dt

#mu2
n
v"F (t), (1)

where v"Xi#>j is the instantaneous displacement of the cylinder, i and j are unit vectors
along the x and y directions, respectively, and F (t)"F

x
(t) i#F

y
(t) j is the unsteady induced

force. Using D and ;
=

as the characteristic length and velocity, the dynamic equation (1)
can be written in a dimensionless form as

d2W

dq2
#4f

s
nSt*

f *
n
f *
s

dW

dq
#A2nSt*

f *
n
f *
s B

2
W"

C
f

2M*
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Here, W"

v
D

and C
f
"

2F (t)
oD;2

=
is the force coe$cient. In this paper, an asterisk in St and f is

used to denote quantities associated with the rigid (stationary) cylinder, while the same
symbols without the asterisk are used to designate quantities associated with the vibrating
cylinder. It should be pointed out that the parameter St* ( f *

n
/ f *

s
) is identical to the inverse

of <
r
. In the present case, St* is constant because the #ow Reynolds number, Re";

=
D/l,

is kept constant; therefore, only the frequency ratio varies as a result of the variation of f*
n
.

This is not the case in the experimental studies of Gri$n & Koopmann (1977), where;
=

is
varied instead. Therefore, in their experiments, both Re and <

r
varied as a result. Equation

(2) indicates that W"W ( f
n
/ f *

s
, f

s
, M*, St*, C

f
).

In principle, the force on the cylinder is calculated by integrating the pressure and the
wall shear stress on the surface of the accelerating cylinder. Zhou et al. (1999) used
a reference frame "xed with the cylinder and superimposed a #ow equal and opposite to
that of the cylinder response to the #ow "eld to account for the cylinder motion. Thus, the
total force is equal to the integral around the non-accelerating cylinder, plus a force related
to the acceleration of the cylinder. The response of the cylinder is determined by assuming
the unsteady #uid force as the input for the right-hand side of equation (1) and solving it
using the Runge}Kutta method. The #ow is then solved subject to this additional #ow in
the next time-step. The above process of solving the #uid motion and the cylinder response
is repeated in an iterative way, so that the interaction between the #uid and the cylinder can
be accounted for properly.

Two approaches are used to determine the damping ratios in a #uid-structure interaction
problem. These are the ARMA technique and the force decomposition method. Since the
objective of the present study is to assess the relative merits of these two di!erent
approaches, it is not necessary to analyse all the cases examined by Zhou et al. (1999). Only
selected cases with M*, f

s
, and f *

n
/f *
s

given by M*"1 and 10, 0)65(f *
n
/f *
s

(5)2 and
f
s
"0)03557, 0)003557 and 0)0003557 are used as test cases for the two approaches. The Re

is set at 200 for all these cases. Therefore, they di!er from the experimental cases of Gri$n
& Koopmann (1977), where;

=
was varied instead. These cases have very small f

s
; thus the

e!ective damping ratio is essentially given by the #uid damping ratio alone and ARMA can
be applied to analyse the data with relative con"dence. Two cylinder vibration situations
are de"ned. In the "rst situation, the cylinder is allowed to vibrate only in the transverse
direction, while in the second, the cylinder is allowed to vibrate in both the x and
y directions. These two situations are designated as the one-degree-of-freedom (1-dof) case
and the two-degree-of-freedom (2-dof) case.

This choice of structural dynamics model, analysis techniques and Re can be justi"ed as
follows. The selection of a spring-damper-mass model to approximate the oscillation of the
cylinder is based on the fact that it best represents the structural properties of the cylinder
near synchronization, and the fact that, even at resonance, the cylinder does not experience
very large deformation. In view of this, the choice of a linear structural model is adequate.
Furthermore, near this resonance condition, the cylinder response is governed primarily (in
the case of a lightly damped cylinder as is the case treated here) by the resonating mode.
Thus, a one-mode approximation or equivalently a 1-dof representation of the cylinder is
quite su$cient. Consequently, it is proposed to examine both the 1-dof and 2-dof cases.

The #uid}structure interaction problem under investigation is certainly not linear.
Therefore, the choice of the data analysis technique requires careful scrutiny. The two
choices adopted in the present study are the ARMA technique and the force decomposition
technique. It is understood that the response of nonlinear systems cannot be fully described
by linear models, such as ARMA. However, there are a series of properties of nonlinear
systems that can be accurately captured by linear models. For example, the response of
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weakly nonlinear systems is known to exhibit both a fundamental frequency and harmonics
(sub- or super-) thereof. These di!erent frequencies can be viewed as separate modes of
response, each of which can be captured by the ARMA modelling technique. In this light,
the ARMA technique appears to perform as a multi-frequency equivalent linearization of
the #uid}structure system. Then, the very good results obtained with linear methods
(Iyengar 1988) would support the use of the ARMA modelling technique for weakly
nonlinear systems. On the other hand, the force decomposition method is essentially based
on a one-mode, or one-frequency, representation of the cylinder vibration. Therefore, it is
not appropriate in the synchronization range, where the nonlinear e!ects will induce both
a fundamental frequency and harmonics thereof. Since the ARMA technique naturally
accounts for multiple frequencies, it can best model the cylinder response time histories,
even near synchronization. Consequently, the ARMA approach is expected to perform
better than the force decomposition method in this range.

According to Zhou et al. (1999), the choice of Re"200 was dictated by the fact that
known numerical and experimental results on a single rigid cylinder were available for
comparison. This, therefore, allows the vortex dynamics method to be veri"ed and give
credence to the proposed numerical treatment of an elastic cylinder in a cross-#ow. Two
rigid cylinder cases at Re"100 and 200 have been calculated by Zhou et al. (1999) and the
calculated Strouhal number, mean drag and root mean square #uctuating lift were found to
be in very good agreement with measurements and other numerical results. These good
results were obtained after a thorough study on the error and accuracy of the vortex-in-cell
method and grid dependence of the numerical technique has been carried out. As for
the forces, they are obtained by integrating the pressure and the wall shear stress on the
surface of the cylinder. Since the pressure gradient is expressed in terms of the vorticity
gradient, the force results are sensitive to the mesh size near the wall, because the calculation
depends on the accuracy of the vorticity values stored in the "rst and second rows of the
mesh. The results will converge, as the mesh size becomes "ner (Zhou 1994). Tests have been
conducted by Zhou et al. (1999) to determine the optimum mesh size. Thus, their calcu-
lations are accurate and reliable and show good agreement with other established results.
Finally, it should be pointed out that even though Re"200 is not representative of any
practical situation, it does have merits in elucidating the fundamental physics of free
vibrations of a cylinder in a cross-#ow. In view of these reasons, the calculations of Zhou et
al. (1999) are credible enough for an initial attempt to extract damping information in
a #uid-structure interaction problem.

3. DATA ANALYSIS

The ARMA technique is used to analyse the time series obtained from the numerical
calculations. This approach considers a multi-degree-of-freedom system described by the
equations of motion

MXG (t)#CX0 (t)#KX (t)"F (t), (3)

where X(t), M, C and K denote the time-dependent response vector of the structure, its
mass, damping and sti!ness matrices, respectively, and F (t) represents the loading on the
system. There are several steps in this approach. First, it represents the time-series data
using an ARMA model, which predicts the present values as a linear combination of the
past values and a white noise deviate, or

X
n
"!

s
+
k/1

A
k
X

n~k
#

s~1
+
k/0

B
k
F
n~k

#

s
+
k/0

C
k
=

n~k
. (4)
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Here, X
n
"X (nDt), F

n
"F (nDt), n"1, 2, 3,2 ,=

n
is a noise vector and A

k
, B

k
and C

k
are

coe$cient matrices, k"1, 2, 3,2 , s. Introducing the notation A
0
"I, where I is the unit

matrix, the above equation reduces to the relation

s
+
k/0

A
k
X

n~k
"

s~1
+
k/0

B
k
F
n~k

#

s
+
k/0

C
k
=

n~k
. (5)

In terms of the z transform, the above ARMA representation can be written as

A (z)X(z)"B (z)F (z)#C (z)= (z), (6)

where

A (z)"
s
+
k/0

A
k
z~k , B (z)"

s~1
+
k/0

B
k
z~k , C(z)"

s
+
k/0

C
k
z~k, X(z)"

=
+

n/~=

X
n
z~n,

F(z)"
=
+

n/~=

F
n
z~n , =(z)"

=
+

n/~=

=
n
z~n.

The elements of the matrices A
k
, B

k
and C

k
are selected so that equation (4) provides

a &&best "t'' for the computed time histories. This is mathematically achieved by maximizing
the likelihood function of the observed time history (Mignolet and Red-Horse 1994).
Finally, the estimates of the natural frequencies, damping ratios and mode shapes are
obtained from the autoregressive part of the ARMA model. As shown in Mignolet
& Red-Horse (1994), the roots, z

l
, of the equation

det A (z)"0, (7)

are related to the natural frequencies u
l
and the damping ratios f

l
of the system by

u
l
"

1
Dt

D ln z
l
D and f

l
"!

1
u

l
Dt

ln D z
l
D. (8a, b)

A more detailed discussion of this technique can be found in Mignolet & Red Horse (1994).
The above explanation attempts to provide the fundamental connection between vibra-

ting structures and ARMA models. Therefore, equation (3) is representative of a general
multi-degree-of-freedom system, not necessarily the #uid}structure interaction problem
considered in this paper. In the current problem, however, ARMA modelling can be applied
in two di!erent ways. The "rst approach is to consider the cylinder alone as the structure
and use the #uid forces as the excitation force, F (t). This modelling is certainly possible but
it would yield the natural frequencies and damping ratios of the cylinder alone, i.e. in the
absence of the #uid. On the other hand, the second approach is to consider both the cylinder
and the #uid as the system, although only the cylinder response is observed. In this case,
F (t ) should denote the excitation external to the #uid}cylinder system, which in fact is zero
in the present problem. Thus, equation (5) is used with F

n
"0 for all n.

In the present context of a #uid}structure interaction problem, it should be noted that the
ARMA methodology yields a linear modelling of the system under consideration and thus
provides a type of &&equivalent linear'' representation for nonlinear systems. This lineariz-
ation of the system can however capture a variety of interesting features. For example, the
ARMA approach generally provides a clear description of the harmonics of the funda-
mental frequency present in the response to which are associated &&mode shapes'' and
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&&damping ratios''which can be used to clarify the nature of these harmonics. Other versatile
identi"cation strategies, such as the Eigensystem Realization Algorithm (Juang & Pappas
1985) and the wavelet transformation (Red-Horse et al. 1996), also lead to linear models but
are based on di!erent mathematical properties of linear systems. When analysing the
response of perfectly linear structures, these methods tend to yield natural frequencies,
mode shapes, and damping ratios that are very close to each other (Red-Horse et al. 1996).
However, in the presence of actual vibration test data, it has been found that the damping
ratios are not as consistent, varying from each other by a relative margin of up to 10%
(Mignolet & Red Horse 1994). It is conjectured here that these di!erences may be attributed
to the nonlinear character of the damping mechanisms often present and to their di!erent
&&linearization'' performed by these methods. On this basis, it is suggested that the values of
the damping ratios presented in subsequent sections should be considered as estimates. If
a value of f is obtained, it could be expected that the true value lies in the band [0)9f, 1)1f].
In other words, the f values determined from ARMA should be attached a relative
&&modelling'' margin of #uctuation of $10%.

In general, the higher the order of the model, the better the "t between the model and the
original time series. However, a higher-order model will give rise to higher computational
costs. Various methods have been proposed to seek an optimal order for the model
(Mignolet et al. 1993), such as examining the values of the Akaike information criterion
(AIC) and the minimum description length (MDL). In order to determine the optimal order,
a group of investigations using di!erent order are performed before the results are actually
analysed. These include examining the values of AIC and MDL, and the variations of the
outputs of ARMA with the model order. It is found that for most of the cases investigated,
the approach with orders higher than 60 gives very consistent results. Therefore, an order 70
is chosen for all cases analysed.

The ARMA technique is capable of giving a much better frequency resolution than the
fast Fourier transform (FFT) method, which is most commonly used for frequency charac-
teristics identi"cation. This is important, especially when the damping ratio of the
#uid}structure system is small and the transfer frequency function shows a sharp peak
around the vortex shedding frequency. The ARMA technique has been used by So et al.
(1999) to determine the damping ratios and mode shapes of an elastic thin aerofoil in #ight.
Such information is very di$cult to obtain from the simple FFT method.

4. DAMPING FROM ARMA ANALYSIS

Since the vibration in the y direction is much more pronounced compared to that in the
x direction, as a "rst attempt, #uid}structure damping is extracted from the time series of
the y displacements in the 2-dof computations. The cylinder displacements (Zhou et al.
1998) for the test cases speci"ed above are analysed using the ARMA approach. The results
of the e!ective damping ratio given by f

e
"f

s
#f

f
are plotted versus the frequency ratio

f *
n

/f *
s

. For the di!erent cases examined, the results show a similar trend (Figures 1}4), i.e.
when f *

n
/f *
s

decreases from 5.2 to 0.65, f
e
decreases slightly "rst and then experiences a valley

at f *
n
/f *
s
&1. This is followed by a very sharp increase to a relatively high value when

f *
n

/f *
s
(1.

An attempt is "rst made to compare this calculated trend with the experimental trend
measured by Gri$n & Koopmann (1977), where the velocity of the oncoming #ow was
varied to produce di!erent frequency ratios rather than changing f *

n
as in the calculations of

Zhou et al. (1999). Their results, therefore, included the e!ects of the variations of<
r
and Re,

while in the numerical calculations of Zhou et al. (1999) only the e!ects of the variation of
f *
n

were examined. In view of this di!erence, a direct comparison of these results is not very
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n
/f *
s
: s, M*"1, f

s
"0)003557, 2-dof; d, M*"1, f

s
"0)003557, 1-dof; **,
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/f *
s
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f
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appropriate. Even then, a qualitative comparison could be made. Gri$n and Koopmann
(1977) observed that the #uid damping changes slowly at low #ow velocity and then
decreases to a minimum as the velocity increases to within the synchronization range.
Furthermore, the minimum range of damping occurs near the maximum amplitude of the
cross-#ow vibrations. As the synchronization range is crossed, the damping increases more
rapidly with #ow velocity. This behaviour is very similar to that shown in Figures 1}4.

A second comparison is made between a 1-dof and a 2-dof case for the same M* and f
s

[Figure 1(a)]. It can be seen that the f
e

behaviour for the two cases is very similar. One
di!erence is that the sharp increase in f

e
occurs at a lower value of f *

n
/f *
s

for the 2-dof case
than for the 1-dof case. This trend agrees with the behavior of the vortex patterns, force
coe$cients and displacement amplitudes of the two cases examined by Zhou et al. (1999),
i.e., the same physical phenomenon always lags behind in the 2-dof case as the value of f *

n
/f *
s

varies from 5)2 to 0)65. The sharp increase in f
e
is caused by a rapid change in the phase

angle / between the lift force and the cylinder displacement [Figure 1(b)]. This result is
remarkably consistent with the phase plot of a lightly damped single-degree-of-freedom
vibrating system which undergoes a rapid transition from 0 to n as resonance is crossed. At
or near synchronization, i.e. f *

n
/f *
s
&1, the damping ratio of the system experiences a valley.

This implies low-energy dissipation and high-energy transfer from the #ow to the cylinder
during the synchronization process. Further evidence in support of this interpretation can
be gleaned from an analysis of the behaviour of the lift drag coe$cient after the unsteady lift
force has been decomposed into an inertia component and a drag component. The latter
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component is called a lift drag component and the coe$cient a lift drag coe$cient.
A detailed discussion of this is given in the next section.

The third comparison is made between two cases with the same M* but di!erent f
s

[Figure 2(a)]. It can be seen that there is very little di!erence in f
e
between the two cases,

because the di!erence in f
s
is quite small compared to f

f
. However, the phase angle / shows

a smoother change for the case with a higher structural damping ratio, i.e. f
s
"0)03557

[Figure 2(b)], a result which is again completely consistent with a single-degree-of-freedom
oscillator properties. It should be noted that the damping ratio corresponding to
f *
n

/f *
s
"5)2 and f

s
"0)03557 is not presented in Figure 2(a) because of the lack of reliability

of its estimate obtained by the ARMA modelling method for which this con"guration is the
most challenging one. Indeed, all natural frequencies and damping ratios are extracted by
the ARMA approach from the transient response of the cylinder which occurs from t"0
until the system settles, exhibiting only the harmonics of the shedding mechanism. Follow-
ing standard vibration arguments, this settling time is approximately inversely proportional
to both the total damping ratio and the actual natural frequency of the system and thus is
the smallest when f *

n
/f *
s
"5)2 and f

s
"0)03557. This con"guration is thus characterized by

an extreme shortness of the transient phase, which hinders the reliable identi"cation of the
low-energy free response within the displacement time series.
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: s, M*"1, f

s
"0)003557, 2-dof; #, M*"10, f

s
"0)0003557, 2-dof;**, equation

(15), M*"1; }} . . , equation (15), M*"10. (b) Variation of / with f *
n
/f *
s

for two di!erent values of M* and f
s
:

*s*, M*"1, f
s
"0)003557, 2-dof; *D*, M*"10, f

s
"0)0003557,, 2-dof.

Figure 4. Comparison of f
e
determined from the X and > displacements: ], x-direction, M*"1, f

s
"0)003557;

s, y-direction, M*"1, f
s
"0)003557.
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Finally, the last comparison is made between two cases with di!erent M* and di!erent
f
s
[Figure 3(a)]. The results show that the value of f

e
for the M* "10 case is much smaller

than that for the M*"1 case at or near synchronization. This behaviour is consistent with
expectation, i.e. the larger the mass ratio the smaller the damping ratio. The / plot
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[Figure 3(b)] shows a very sharp jump for both cases though. However, the jump occurs at
a lower value of f *

n
/f *
s

in the M*"10 case compared to the M*"1 case. This observation
appears to be quite physical since, as M* is increased, the e!ect of the #uid on the structure
is decreased. Further, besides damping the cylinder vibrations, the #uid primarily provides
an added mass e!ect to the structural system. Then, the natural frequency of the #uid-
structure system will stay higher for M*"10 than for M*"1 and a lower value of f *

n
/f *
s

will be required to have resonance with the almost constant shedding frequency for
M* "10 than for M*"1.

Since #uid damping is motion dependent, there is no reason to expect it to be the same in
both the x and y directions. The present results provide further evidence to support this
interpretation. Figure 4 shows the comparison between the damping ratio in the x direction,
f
ex

, and that in the y direction, f
ey

. It is seen that the value of f
ex

is larger than that of f
ey

at
or near synchronization. This shows that the vibration in the y direction is even more
dominant when synchronization occurs. It is also noticed that the location where
f
ex

reaches a minimum ( f *
n
/f *
s
"1)2) is di!erent from f *

n
/f *
s
&1, where f

ey
has its lowest

value. The fact that the damping ratio f
ex

is larger than f
ey

has been previously shown by
Blevins (1994), who used simple deduction and certain linear approximations to deduce
f
fx

and f
fy

, which are given by

f
fx
"

1
4p
;

=
f
n
D

1
M*

C
D
, f

fy
"

1
8p
;

=
f
n
D

1
M*

C
D
. (9)

It is obvious that f
fx
'f

fy
. Therefore, it also follows that f

ex
is larger than f

ey
. The same

conclusion can also be drawn from the experimental investigation of Chen and Jendrzejczyk
(1979).

5. DAMPING FROM UNSTEADY FORCE DECOMPOSITION

An alternative way to extract damping information is to attempt to decompose the
excitation force in the transverse direction into a drag or out-of-phase component and an
inertia or in-phase-component for substitution into equation (1) for analysis (Sarpkaya
1981). This analysis, therefore, ignores the coupling between the x and y directions and
assumes that the #uid damping is derived mainly from the oscillations in the y direction.
Since vortex shedding is more or less a sinusoidal process, it is reasonable to assume that the
transverse force acting on the cylinder undergoes harmonic variations. Therefore, the
displacement of the cylinder in the y direction may be assumed to be approximated by
>(t)">

.!9
sin (u

s
t ), while the instantaneous velocity and acceleration can be determined as

<(t)"<
.!9

cos (u
s
t) and a

y
(t)"!u

s
<

.!9
sin (u

s
t), respectively. The transverse force F

y
(t)

leads the excitation by a certain phase angle and may be decomposed into a drag term and
an inertia term which can be called &&lift drag force'' and &&lift inertia force'' since both are in
the lift direction. Thus decomposed, the transverse force can be written as

F
y
(t)"!

1
2

oD<2
.!9

C
dl

D cos (u
s
t) Dcos(u

s
t )!

nD2

4
oC

ml
a
y
(t) . (10)

It is known that for a cylinder vibrating with small amplitude in a stationary #uid, the
inertia coe$cient C

ml
is equal to the added mass coe$cient C

a
with a value around 1 for

a circular cylinder. For a stationary circular cylinder in a small-amplitude oscillatory #ow,
C

ml
"1#C

a
+2, which can be interpreted as the sum of a pressure force (resulting from

the mean pressure gradient in the #uid) and an added mass force. In general, the added mass
coe$cient is not exactly 1 (C

a
O1). Its value will depend on the type of motion of the body
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and/or the #uid motion around the body. In the present situation, C
ml

represents the sum of
both the added mass force and the #uid lift force in the direction of the cylinder acceleration.
Nondimensionalizing equation (10) by using 1

2
oD;2

=
and rearranging gives

F
y
(t)

1
2
oD;2

=
"!C

dlA
<

.!9
;

= B
2
Dcos (u

s
t ) Dcos (u

s
t )#C

ml
n2St

<
.!9
;

=
sin (u

s
t ). (11)

If the term cos (u
s
t) Dcos (u

s
t) D is expanded in series and only the "rst term is retained,

equation (11) becomes

F
y
(t)

1
2
oD;2

=
"!C

dl

8
3nA
<

.!9
;

= B
2
cos (u

s
t )#C

ml
n2St

<
.!9
;

=
sin (u

s
t ). (12)

Substituting equation (12) into the y component of equation (1), the equation governing the
displacement in the y direction can be written as

m
d2>
dt2

#2mu
nAfs#

2
3n

1
M*

f
s
f
n

>
.!9
D

C
dlB

d>
dt

#mu2
n
>"C

ml
n2 St

<
.!9
;

=
sin (u

s
t ), (13)

and the #uid damping ratio f
f

is given by

f
f
"

2
3n

1
M*

f
s
f
n

>
.!9
D

C
dl

. (14)

This formula indicates that f
f

is directly proportional to >
max

/D and the frequency ratio
f
n
/f
s
. However, it is inversely proportional to the mass ratio M*. Since the lift drag

coe$cient C
dl

is also a function of these parameters, the relation between f
f
, >

.!9
/D and

M* may not be as simple as equation (14) indicates. When synchronization occurs,
nonlinearity becomes more and more important. As a result, the relationship between #uid
damping and these parameters will become even more complicated. In spite of these
concerns and to the lowest order, relation (14) could be used to assess the dependence of
the #uid-damping ratio on these parameters, especially when experimental data are not
available.

If the analogy is drawn between the present vibrating cylinder case and that of a two-
dimensional cylinder in small-amplitude oscillation without separation, then the drag
coe$cient C

dl
in equation (14) could be deduced from the solution given by Stokes for the

small-amplitude oscillation problem. Noting that over a cycle of oscillation
cos (2nf )Dcos (2nf ) D could be approximated by (8/3n) cos (2nf ), the "rst term of its Fourier
expansion series, the Stokes' solution for the drag coe$cient (Batchelor 1970) is then given

by C
d
"(3n2/4) (D/>

.!9
)Jl/nfD2. Taking this solution of C

d
as C

dl
in equation (14),

assuming f to be given by f
n

and substituting into equation (14) gives

f
f
"

Jn
2

1
M*

f
s
f
n
S<rs

Re
s

, (15)

where <
rs
"<

.!9
/f
n
D and Re

s
"<

.!9
D/l are de"ned for convenience. By analogy, Re

s
can

be taken to be the same as Re, and <
rs

to be given by ;
=
/f
n
D. Results thus calculated are

plotted in Figure 1(a) for the case where M*"1 and f
s
"0)003557 and in Figure 3(a) for the

two cases where M*"1, f
s
"0)003557 and M*"10, f

s
"0)0003557.

A close agreement between equation (15) and the damping ratio results deduced from
ARMA cannot be expected since, in the present situation, the #ow is always separated and,
furthermore, when synchronization occurs, the amplitude of the vibration becomes quite
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large (&0)5D). However, it is instructive to plot equation (15) for comparison because it
could shed light on the functional dependence of f

f
on parameters such as M* and f *

n
/f *
s
. It

can be seen from Figure 1(a) and 3(a) that this simple relation (15) does show a similar trend
as the ARMA results in terms of the parameters f *

n
/f *
s

and M*; i.e. as f *
n
/f *
s

decreases,
f
f

increases, and when M* increases, f
f

decreases. When the frequency ratio is much larger
than 1 and the amplitude of the vibration is small, the ARMA results are quite close to those
deduced from equation (15). However, as expected, large di!erences appear in the region
surrounding synchronization. Here, the ARMA deduced damping ratios are much smaller
than the predictions of equation (15). There are numerous reasons for the discrepancy; chief
among them are the inappropriateness of equation (15), since the Stokes formula for the
drag is for attached #ow only, and the inability of the force decomposition method to model
the nonlinear character of the #uid}structure interactions near synchronization. Therefore,
for reasons explained above, the ARMA results near synchronization are expected to be
more reliable than those deduced from the force decomposition method.

The #uid damping ratio could further be determined from equation (14), but with the
drag coe$cient C

dl
evaluated from the time history of the transverse #uid force in the

following way. In general, the force coe$cients C
dl

and C
ml

in equation (12) are functions of
time; however, their averages can be evaluated as

C
dl
"!

3
4 P

2n

0

F
y
(t) cos (u

s
t)

o<2
.!9

D
d (u

s
t), (16a)

C
ml
"

2<
.!9

n3f
s
D P

2n

0

F
y
(t) sin (u

s
t)

o<2
.!9

D
d (u

s
t ). (16b)

Before examining the result of equations (14) with (16) substituted for C
dl
, the behaviour

of the force coe$cients are examined "rst. The results of C
dl

and C
ml

thus obtained from
equation (16) by numerically integrating the above expressions with the time series F

y
(t) are

presented in Figure 5(a) and Figure 5(b), respectively, for the 1-dof and 2-dof cases. It is seen
that, when f *

n
/f *
s

is much larger than 1 and the vibration amplitude is very small,
C

ml
approaches unity while C

dl
becomes relatively large. The values of the lift inertia and lift

drag coe$cients in this range of f *
n

/f *
s

are very close to those for a cylinder undergoing
small-amplitude oscillations in a quiescent #uid. As f *

n
/f *
s

approaches 1 and the vibration
amplitude increases, C

dl
drops rapidly while C

ml
increases slightly "rst and then reaches

a maximum of about 2 just before synchronization occurs. Thereafter, it decreases sharply
below 1 and reaches a minimum at f *

n
/f *
s
&1. The rapid drop in C

ml
occurs when the

#uid}structure system undergoes synchronization. For f *
n
/f *
s
(1)0, both C

dl
and C

ml
are

seen to have relatively steady values. The result of the lift inertia coe$cient analysis,
therefore, indicates that using the added mass coe$cient C

a
"1 to model the vortex-

induced vibration is not quite proper. The natural frequency of the #uid}structure system
assuming C

a
"1 may be underestimated when f *

n
/f *
s

is in or falls below the synchronization
range. This phenomenon will be further discussed in the next section.

For the 1-dof and 2-dof cases, the variation of C
dl

and C
ml

with f *
n
/f *
s

are quite similar.
However, the value of C

dl
for the 2-dof case appears to be slightly larger than that for the

1-dof case, while the opposite is true for C
ml

. The reason for this is not known at present. It
could be due to the fact that restricting the cylinder vibration to just one direction could
have an undue e!ect on the behaviour of these parameters. In other words, the coupling
between the vibrations in the x and y directions cannot be ignored, even for this rather
simple case of an elastic cylinder in a cross-#ow.

Previously, equation (10) was normalized by using the term 1
2
oD;2

=
and the result was

equation (11). However, the term 1
2
oD<2

.!9
may be more sensitive to the motion in the



Figure 5. (a) Variation of C
dl

with f *
n

/f *
s

:*d*, 1-dof;*s*, 2-dof. (b) Variation of C
ml

with f *
n
/f *
s

:*d*, 1-dof;
*h*, 2-dof.
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y direction than the term 1
2
oD;2

=
. Therefore, it is suggested to re-examine the

force behaviour by normalizing the transverse #uid force (10) using the term 1
2
oD<2

.!9
.

The result is

F
y

1
2
oD<2

.!9

"!C@
dl

cos (u
s
t)#C@

ml
sin (u

s
t), (17)

where C@
dl

and C@
ml

are related to C
dl

and C
ml

by the following relations:

C@
dl
"

32n
3 A
>

.!9
D B

2
St2C

dl
, (18a)

C@
ml
"2n3

>
.!9
D

St2 C
ml

. (18b)

The variations of C@
dl

and C@
ml

with f *
n
/f *
s

are plotted in Figure 6. It can be seen that the lift
drag coe$cient becomes negative at f *

n
/f *
s
&1)0, which is more visible in Figure 6(a). This

negative behaviour indicates that the lift drag force is in phase with the velocity of the
cylinder and helps to magnify the vibrations rather than damp them out. It also suggests



Figure 6. (a) Variation of C@
dl

with f *
n

/f *
s

:*d*, 1-dof;*s*, 2-dof. (b) Variation of C@
ml

with f *
n
/f *
s

:*d*, 1-dof;
*s*, 2-dof.

FLUID DAMPING OF A CYLINDER IN CROSS-FLOW 317
that the direction of energy transfer is from the #uid to the cylinder and this is accomplished
through the mechanism of synchronization.

Once the transverse force is known, C
dl

can be determined from equation (16) and f
f
from

equation (14). The result is plotted in Figure 1 as the dashed curve. It is seen that the curve is
in reasonable agreement with the results obtained from ARMA in the range of f *

n
/f *
s
'1

but a substantial discrepancy appears in the range of f *
n
/f *
s
(1. The poor agreement could

be due to a number of reasons. Certainly, a major one is the importance of nonlinear
interaction at or near synchronization; therefore, both the ARMA method and the force
decomposition technique which are based on linear assumptions may not represent the
situation completely. Another reason could lie in the value assumed for C

dl
. The value of

C
dl

in fact represents the total force component as it is derived in the direction of the
cylinder velocity in the y direction, i.e.<(t). According to Gri$n and Koopmann (1977), this
component should include the components of excitation force which is in-phase with <(t)
and the #uid reaction force, or the #uid damping, which is in-phase but is opposite to that of
<(t). In other words, the damping force is only part of it. Furthermore, it has been found
from the lift force time histories that, in the range of f *

n
/f *
s
(1, a lower frequency related

to the natural frequency of the cylinder settles in. The assumption of simple harmonics for
the shedding frequency cannot represent the lift force properly, even to the lowest order.
The agreement in the range f *

n
/f *
s
'1 suggests that the main part of the drag force is the
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damping force, hence the lift force decomposition, as proposed in equation (16), could be
appropriate in that frequency range.

6. M* EFFECT ON THE SYSTEM NATURAL FREQUENCY

The natural frequency f
n
of the #uid}structure system may be estimated from the sti!ness

and the e!ective mass of the system, which includes the structural mass and the added mass
due to #uid motion. When the mass ratio between the structure and the #uid is small, the
e!ect of the added mass on f

n
is important since it in#uences the frequency ratio range at

which synchronization occurs. Generally, the smaller the mass ratio, the wider is the range
of frequencies f *

n
/f *
s

corresponding to the vibration peak band. To investigate this e!ect,
a relation between f

n
and f *

n
has been derived by Zhou et al. (1999) assuming C

ml
"C

a
"1.

The relation was obtained by moving the added mass term from the right-hand side to the
left-hand side of equation (10) to form the e!ective mass of the system. The relation in its
more general form is given by

f
n
"f *

n
/J1#C

a
(4/nM*). (19)

The results of f
n
determined from ARMA for the di!erent cases are presented in Figures

7}9 together with the results deduced from equation (19) for the M*"1 and 10 case. When
f *
n

/f *
s

is much larger than 1 and f
s
"0)003557, equation (19) appears to give a fairly good

estimate of f
n
, as can be seen from Figure 7. For higher values of f

s
, such as f

s
"0)0357

(Figure 8), the agreement between the ARMA results and equation (19) is not as good as for
the case where f

s
"0)003557. When f *

n
is approximately equal to f *

s
, the comparison

indicates that f
n
does not follow the relation given by equation (19). Instead, it is consistently

higher than that given by equation (19). This is clearly shown in Figure 9. The underestima-
tion of equation (19) is due to the fact that C

ml
drops below 1 as synchronization occurs.

This is evident from equation (19) because when C
a
is less than 1, f

n
"f *

n
/J1#C

a
(4/nM*)'
Figure 7. Variation of f
n
with f *

n
/f *
s

for di!erent M* and f
s
: **, f

n
/f *
s
"f *

n
/f *
s

; ---, equation (19), M*"1; } } },
equation (10), M*"10; s, M*"1, f

s
"0)003557, 2-dof; #, M*"10, f

s
"0)0003557, 2-dof.



Figure 8. Variation of f
n

with f *
n

/f *
s

for the same M* and f
s
: **, f

n
/f *
s
"f *

n
/f *
s

; ---, equation (19), M*"1; s,
M*"1, f

s
"0)003557, 2-dof; h, M*"1, f

s
"0)003557, 2-dof.

Figure 9. Comparison of the variation of f
n

with f *
n

/f *
s

for the 1-dof and 2-dof systems: **, f
n
/f *
s
"f *

n
/f *
s

; ---,
equation (19), M*"1; s, M*"1, f

s
"0)003557, 2-dof; h, M*"1, f

s
"0)03557, 2-dof; d, M*"1, f

s
"0)003557,

1-dof.
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f *
n

/J1#4/nM* . Therefore, it is not surprising to see that in the range of f *
n
/f *
s
"0)87 to

0)65, the value of f
n
determined from ARMA is higher than that obtained from equation (19).

7. CONCLUSIONS

An identi"cation technique based on the autoregressive moving-average (ARMA) method
has been used to analyse the transverse displacement time histories obtained from a
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numerical simulation of an elastic cylinder placed in a uniform cross-#ow. This approach is
used to investigate the e!ective damping ratio of the #uid-structure system. Since the
structural damping ratio is very small compared to the #uid damping ratio, the e!ective
damping ratio is essentially equal to the #uid damping ratio. It is found that there is
a decrease in the #uid damping ratio in the region of synchronization, which indicates a low
energy dissipation and a high energy transfer from the #ow to the cylinder motion. Outside
of the synchronization region, the #uid damping ratio increases as the amplitude of the
vibration increases. It is further found that the mass ratio has a strong in#uence on #uid
damping, i.e., the larger the mass ratio the smaller the #uid damping ratio. The credibility of
these results is veri"ed by an independent method, which depends on the analysis of the
unsteady transverse force.

The method relies on the decomposition of the transverse #uid force into a drag (or
out-of-phase) component and an inertia (or in-phase) component and their substitution into
the structural dynamics equation for analysis. The damping ratios thus deduced are in
agreement with the ARMA results, except in the region surrounding synchronization. In
this region, the ARMA results are expected to be more reliable than those deduced from the
force decomposition method. The reason is that the force decomposition method is
essentially based on a one-frequency representation of the cylinder vibration, while the
ARMA technique naturally accounts for multiple frequencies and thus can best model the
cylinder response time histories near synchronization. Furthermore, the ARMA deduced
damping ratios show a very similar trend to the experimental results obtained by Gri$n
and Koopmann (1977). This means that the ARMA technique is a good identi"cation tool
for #ow-induced vibration problems.
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APPENDIX: NOMENCLATURE

a
y

cylinder acceleration along the y direction
C

a
added mass coe$cient

C
D

mean drag coe$cient
C

dl
lift drag coe$cient

C
ml

lift inertia coe!cient
D diameter of cylinder per unit length
F
x

x-component of induced force vector
F
y

y-component of induced force vector
f
n

natural frequency of #uid}cylinder system in Hz
f *
n

natural frequency of cylinder only in Hz
f
s

vortex shedding frequency of vibrating cylinder in Hz
f *
s

vortex shedding frequency of stationary cylinder in Hz
m mass of cylinder per unit length
M*"m/oD2 ratio of cylinder mass over displaced #uid mass
Re";

=
D/l Reynolds number

St"f
s
D/;

=
Strouhal number of vibrating cylinder

St*"f *
s
D/;

=
Strouhal number of stationary cylinder

t dimensional time
;

=
free stream velocity

<
r
";

=
/f *
n
D reduced velocity

<(t) instantaneous velocity
<

.!9
amplitude of the instantaneous velocity

x streamwise coordinate
X x-component of cylinder displacement
y transverse coordinate
> y-component of cylinder displacement
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>
.!9

amplitude of the y displacement
f
e

e!ective damping ratio
f
f

#uid damping ratio
f
s

structural damping ratio
f
ex

e!ective damping ratio deduced from x-direction signal
f
ey

e!ective damping ratio deduced from y-direction signal
f
fx

#uid damping ratio deduced from x-direction signal
f
fy

#uid damping ratio deduced from y-direction signal
l #uid kinematic viscosity
o #uid density
q"t;

=
/D non-dimensional time

u
n
"2nf

n
angular natural frequency of #uid-cylinder system

u
s
"2nf

s
angular frequency of vortex shedding
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